

Vaccine and Infectious Disease Organization - International Vaccine Centre

Managing Aerosols from an Operations & Maintenance Perspective

Tracey Thue, Biosafety Officer

Vaccine & Infectious Disease Organization – International Vaccine Centre

(VIDO-InterVac), University of Saskatchewan

NIVERSITY OF ASKATCHEWAN

Managing Aerosols from an O&M Perspective

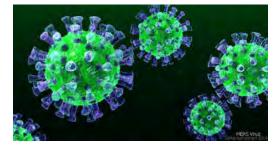
- Introduction to VIDO-InterVac
- Risk Assessment process
- RG3 pathogens, aerosols
- Engineering controls in CL3-Ag, HEPA filters
- Local Risk Assessment for O&M staff
- Procedure for O&M staff

International Vaccine Centre (InterVac)

Large CL3 and CL3-Ag facility

In-house full-time O&M team of 7

Risk Assessment


- Step 1: Identify and Characterize Hazards
- Step 2: Identify and Assess Risk
- Step 3: Develop and Implement Risk Mitigation Strategies
- Step 4: Review and Continually Improve

Risk Groups 1 - 4

RG1 *low individual, community risk* E. coli, Baker's yeast

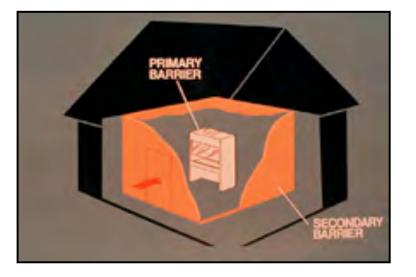
RG2 moderate individual, low community risk Adenoviruses, PEDV, Influenza, ZV

RG3 high individual, low community risk HPAI, MERS-CoV, *M. tuberculosis, M. bovis*

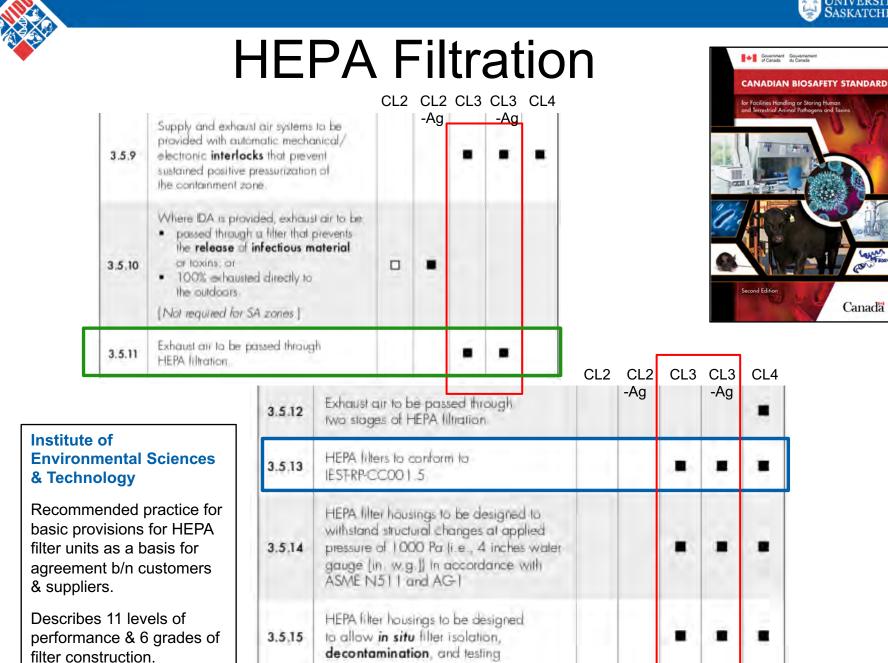
RG4 high individual, community Ebola virus

Aerosols

- Created by any action that imparts energy into a liquid or semi-liquid
- Larger aerosol droplets (5 100 µm) settle quickly & contaminate surfaces: ingestion hazard
- Smaller droplets (< 5 µm) evaporate rapidly, particulates remain airborne for a long time: inhalation hazard


Controls of Biosafety

Engineering Controls Administrative Controls Procedural Controls Personal Protective Equipment



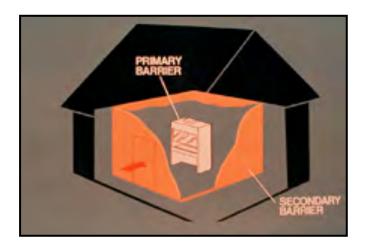
Engineering Controls

Facility Design Secondary Containment

- "Box in a box"
 - 1° barrier (BSC) protects worker
- 2° barrier protects environment outside the laboratory
 - HEPA filters

Engineering Controls To researchers working in the lab

Engineering Controls To O&M team on HEPA deck



-

Engineering Controls

Facility Design Secondary Containment

In CL3-Ag, large animals cannot be placed inside containment device, so

2° barriers become
1° barriers

This is why risk when working in animal cubicles

Engineering Controls

To researchers working in a large animal cubicle

Engineering Controls To O&M team on HEPA deck above large animal cubicle

HEPA Filters

Camfil HEPA/ULPA Filter

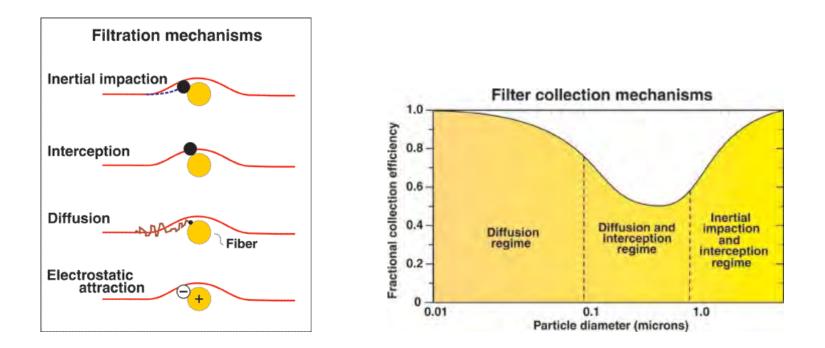
P/N 5210192 XH Absolute

99.97-99.9995% filtering efficiency @ $0.3\mu m$

Micro-fine glass media formed into pleats separated by a corrugated aluminum separator.

Camfil 30/30 Pre-filter

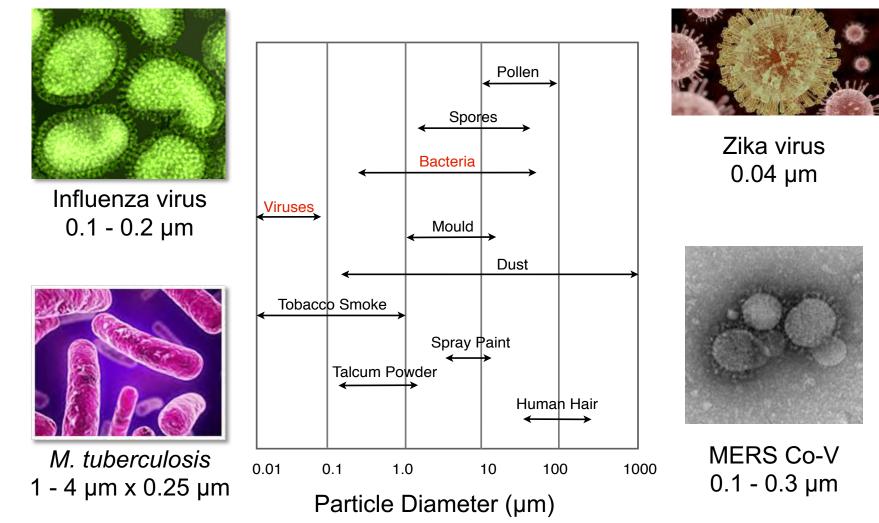
MERV 8 ASHRAE Std 52.2-2007, App J. Filters particles of sizes 3.0 – 10µm (and larger) i.e. Mold, spores, cement dust, hair, dander


Cotton and synthetic media with welded wire support grid, beverage board enclosing frame.

HEPA Filters

99.97% Filtering efficiency <u>lowest</u> at 0.3µm particle diameter

Building Design & Engineering Approach to Airborne Infection Control


AIR FILTRATION Steve Rudnick* 2010

Book chapter describing construction and function of HEPA filters.

*Exposure, Epidemiology and Risk Program, Dept. of Environmental Health, Harvard School of Public Health, Boston, Massachusetts

Particle Sizes

CL3 Lab single HEPA filter housing on exhaust air

CL3-Ag Animal Cubicle single HEPA filter housing on supply air CL3-Ag Animal Cubicle double HEPA filter housing on exhaust air

Local Risk Assessment

Hazard Identification Activity: Scan the HEPA filters

Open HEPA housing if scan fails

Bag in/bag out design

Local Risk Assessment

2. Identify and Assess Risk

Opening contaminated HEPA housing

Risk	Likelihood	Consequence	
Exposure to worker	Medium - High	Low – High Depends on pathogen survival in housing, contact	
Release to environment	Low - Medium	Low – High Depends on pathogen survival, mobility	

Pathogen Characteristics

Pathogen	Survival @ RT on dry surface	Heat inactivation	Chemical inactivation
M tuberculosis	Months	> 65C 30 min 121C 15 min	Cavicide 3 min
MERS-CoV	24hr – 6 days	60C 30 min	5% MicroChem Plus, 10 min
Influenza A	Hard surface: 24-48hrs Porous surface: 8-12hrs SST+OM: 7days	70C 5 min 80C 2.5 min 90C 1 min	Cavicide 3 min

-

Local Risk Assessment

3. Develop Risk Mitigation Strategies

Administrative Controls:

- Training
- Documentation of room use
- Communication



Procedural Controls:

- Post signage to communicate status of housing
- > VHP decontaminate housing prior to opening
- > PPE
- Disposal of HEPA filter


Exhaust Air HEPA Housing

Biohazard sign dated & posted by BSO on day of animal challenge, or shortly before.

From this date until VHP decon, all internal parts of housing considered contaminated.

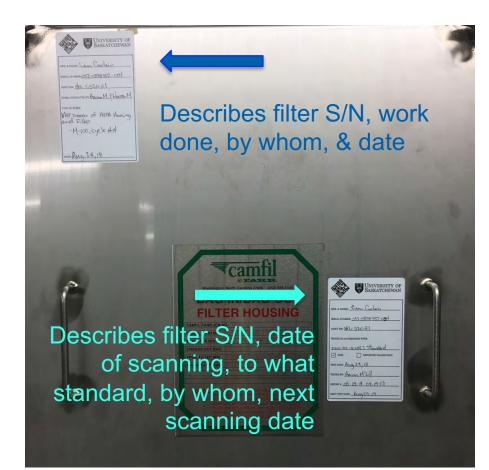
Supply Air HEPA Housing

Biohazard sign posted:

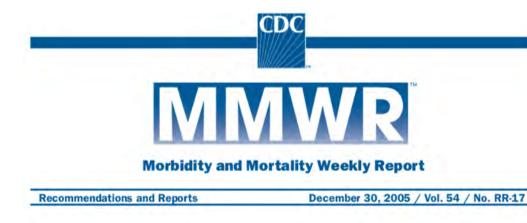
"*Potentially contaminated*" unless the room pressure goes positive for any reason.


Signage is changed to "contaminated", date and reason.

VHP Decontaminate filters and housing


G370 NELEOPSY EXHAUST HERA HOUSING HFL-GO G370-EIA VHP-DECON October 5,2016. 7-DAY BI RESULTS OCTOBER 12,2016

Autoclave filters & dispose



Signage: Testing and maintenance work

Guidelines for Preventing the Transmission of *Mycobacterium tuberculosis* in Health-Care Settings, 2005 88

MMW

or other condition that interferes with the seal of the respirator to the face.

- How long can I use my respirator for TB exposures before I discard it? Disposable respirators can be functional for weeks to months and reused by the same HCW. Reuse is limited by hygiene, damage, and breathing resistance, and manufacturer instructions should be considered.
- Should persons who perform maintenance on and replace filters on any ventilation system that is likely to be contaminated with *M. tuberculosis* wear a respirator? Laboratory studies indicate that re-aerosolization of viable mycobacteria from HEPA filters and N95 disposable respirator filter media is unlikely under normal conditions; however, the risks associated with handling loaded HEPA filters in ventilation systems under field-use conditions have not been evaluated. Therefore, persons performing maintenance and replacing filters on any ventilation system that is likely to be contaminated with *M. tuberculosis* should wear a respirator (see Respiratory Protection) and adhere to local recommendations for eye protection and gloves.

Local Risk Assessment

4. Review and Improve

Administrative Controls:

- ➤ Training
- Documentation of room use
- Communication

Procedural Controls:

- Post signage to communicate status of housing
- VHP decontaminate housing prior to opening
- PPE nitrile gloves, safety glasses
- Disposal of HEPA filter

